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CHAPTER I. INTRODUCTION 

The objective of this dissertation is to delve a bit deeper than 

has been done before into various aspects of the theory of the multi-

product firm. In particular, the work is of the nature of an exploration 

Into a quite complex̂  area and as such no claim is made with respect to 

having presented a complete, overall, theory of the multiproduct firm. 

The presentation itself is divided into three chapters and an 

Appendix. Chapter II, then, deals with the short run cost minimiza­

tion problem of a multiproduct firm operating in a productive atmosphere 

characterized by independent production. That is to say the level of 

output of any one final good is not affected directly by the output 

level of any other final good the firm produces. Mathematically such a 

situation amounts to the positing of r independent production functions, 

each one pertaining to one of the r goods the firm produces. 

In particular the formulation of the problem is such that an initial 

allocation of fixed factors is made over the various r production proc­

esses of interest. This initial allocation is made directly previous to 

the particular short run of Interest and it is assumed that no real­

location of those fixed factors is possible for the duration of the 

period. 

In this problem, as well as those treated in the following chapters, 

the fixed factors themselves are given a somewhat more explicit role 

P̂erhaps one should add "relatively neglected." 
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than Is usually the case In contemporary neo-classical production theory. 

In particular, the fixed factors appear in production functions at usage 

rather than capacity levels, a consideration which allows one to take 

explicit account of excess capacity in a multiproduct (or single product) 

firm that uses both fixed and variable factors of production. 

The third chapter again deals with cost minimization but the treat­

ment is somewhat briefer than the previous problem in that it does not 

deal with the vagaries of excess capacity to the extent that Chapter II 

does. The production function used to characterize the productive 

atmosphere in which the firm under consideration finds itself is almost 

identical to that denoted by Dano [8] as representative of what he calls 

"classical joint production" and which in turn is characterized by his 

mentor, the Nobel Laureate, Frisch [11], as possessing a degree of 

assortment one less than the number of goods being produced by the firm. 

Again, as in the previous problem, the explicit usage levels of 

fixed as well as variable input levels are included in the production 

function. However, in contrast to that previous problem, here fixed 

factors may be thought of as amenable to being, costlessly, switched from 

production of one good to that of another good. This last consideration 

leads to the positing of an opportunity cost associated with the assign­

ment of scarce factors. The existence of such a cost is of particular 

interest in Chapter IV where the firm is assumed to produce under these 

conditions given in Chapter III. 
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Profit maximization is the concern of the fourth and final chapter. 

Here the concepts of nonprice offer variation̂  and the sales function of 

the firm are introduced, discussed, and incorporated into the analysis. 

In particular, prices and N.P.O.V.'s become, as opposed to quantities, 

the relevant decision or control variables of the firm in its attempt to 

maximize net revenue. 

The results of this last chapter highlight, rather clearly, the 

supposition that the multiproduct firm is concerned with the effects 

that changes in decision variables induce in sales and production through­

out its posited product line. This consideration is greatly stressed, 

not only through the very nature of the mathematical terms comprising 

the necessary conditions to be inspected but also through the economic 

interpretation of such conditions. 

The first order necessary conditions are somewhat different than 

those which usually appear in contemporary textbook treatment of the 

firm in that opportunity costs associated with the allocation of scarce 

factors at the margin are treated on an equal footing with marginal 

variable costs. The rationale for such a treatment is revealed through 

a demonstration involving the second order necessary conditions for a 

local maximum in an appropriately defined problem. 

2 
Throughout, interest is focused almost exclusively upon production 

devoted to current sales, that is, production of saleable products and 

Ĥenceforth to be referred to as N.P.O.V. 

2 
The almost refers to a brief excursion in Chapter II. 
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N.P.O.V.'s destined to be sold and offered during the short run of in­

terest. Therefore it is assumed that the firm of interest is operating 

with zero inventory accumulation, that is, as Holdren [15, p. 580] puts 

it, "We assume unless otherwise stated, that the firm is not undertaking 

intentional inventory accumulation or decumulation." This last assump­

tion, often implicity made but rarely explicitly stated, allows one to 

set production equal to sales. 

The mathematical technique employed throughout is that of nonlinear 

programming. This technique was chosen because it gives one the ability 

to consider both equality and inequality constraints in the same problem 

in a somewhat natural fashion; natural pertaining to the supposition 

:hat this technique seems to be a tailor-made language for the economist.̂  

The technique is used to postulate necessary conditions for a 

maviTninn (minimum) of a real valued twice differentiable function defined 

on some open subset of . The necessary conditions postulated are of 

both the first and second order, the latter conditions pertaining to a 

local maximum (minimum) and the former pertaining to any maximum (min­

imum). The normality condition assumed, that is, the condition the 

fulfillment of which allows one to postulate that the aforementioned 

necessary conditions are indeed necessary, is the rank condition of the 

Arrow-Hurwicz-Uzawa [2] constraint qualification theorem. A general 

nonlinear programming problem incorporating mixed constraints is presented 

T̂hat nonlinear programming is such a language has been impressed 
upon me (quite often) by my major professor Bob Holdren. 
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as an appendix and should be of 

directed towards presenting all 

velc-ment of the three chapters 

interest in that it is specifically 

the conditions incorporated in the de-

to follow. 
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CHAPTER II. COST MINIMIZATION UNDER CONDITIONS 

OF INDEPENDENT PRODUCTION 

The work in this chapter is concerned with the cost minimization 

problem of a multiproduct firm producing r goods under conditions of 

independent production. Mathematically such a situation amounts to the 

positing of r independent production functions. 

The problem is cast in terms of a short run situation, and in 

particular, of the many short runs one might consider, this one involves 

a production period such that at the outset of the period the fixed 

factors of production are allocated for use among the various production 

processes. Furthermore, once this initial allocation has been made 

there is no possibility of reallocation of those fixed factors; a con­

sideration which holds for the duration of the period under considera­

tion. 

Previously, a similar problem was treated by Ralph Pfouts [20], 

however he allowed switching (reallocation) of fixed factors at any time 

during the production period if warranted by a compensation greater than 

the costs of the reallocation itself. Pfouts' treatment is repeated in 

Benavie [5] and Ferguson [9] and is adopted by Naylor [19] in the con­

text of a profit maximization problem and again, but to a lesser degree, 

by Swenson [25]. 

Some of the notation to be used in this, as well as the following 

chapters, and explanation thereof, is presented directly below: 
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V  =  ( v ^ ,  . V j ,  V g ) ,  V j  >  0 ,  j  =  ( 1 ,  s )  ,  

where is the level of usage of the variable factor of production . 

 ̂~~ (ŷ ) • • • » • • • » ŷ ) > ŷ  ̂  o» k — (i, » « * t) , 

where is the maximum amount available of the fixed factor of produc­

tion Yĵ . 

 ̂~~ (ŷ » •••» ŷ » •••» ŷ )» ŷ  ̂   ̂~~ (1» •••» t) , 

where is the level of usage of Ŷ . 

Q — •••> •••» 9̂ )* 9  ̂0, i — (Ij « « * r) , 

where is the level of output of good 

The production functions are given by 

9~ '̂ î îl' ***» îj' •••' ̂ is' ̂ il' îk* '**> ît̂ ' 

i = (1, r) (2.1) 

Some of the goods being produced are saleable output while others 
are N.P.O.V.'s. However, there is not need to differentiate between 
them until Chapter IV. 
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> 0; denotes the usage level of the variable input used in 

the production of the î  ̂good, > 0; denotes the usage level of 

the fixed input used in the production of the î  ̂good. 

The cost function is given by 

T.C. = C(vL, ..., v., ...» V ) + F (2.2) 
-L 3 s 

where 

r 
C = I C (v V , ..., V. ) , 

i_l 1 IJ IS 

and F represents fixed costs. 

Finally, the initial allocation of fixed factors is represented 

by 

_ r _ 
y,, = I y.k, k = (1, ..., t) (2.3) 

i=l 

Mathematically, the cost minimization problem is as follows: 

Minimize 

r 
C = I •••» Vij' ' vjg) + F (2.4) 
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subject to 

9]̂  ~ *•*' ' **** ̂ Is' ̂ 11 Îk' *'*' ̂ It̂  ~~ ® 

9~ *••' j' * îs* ̂ il* * îk' ***» ~ 0 

<lr - Sr̂ r̂l' *••' ̂ rj' ' ' ̂rs' ̂ rl' ' ̂rk' ' ̂rt̂  " ° 

>0, i = (1, ...» r), k  = (1, ..., t) 

v_ > 0, j = (1, ..., s) 

îk : " •' 

* * 
Assume now that (V , Y ) is a feasible point of the constraint set and 

that at (V , Y ) the first 2<s4-t-rof the inequality constraints 

are binding. Consider now the jacobian matrix [J] (below) evaluated at 

(V*, Y*), 

All functions and constraints are assumed to be real valued and 
to have the necessary differentiability properties on X, an open subset 
of 
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(J) = 

(Jl+r)x(s+t) 

h 
9Vi 

3v, 

9q. 

* 3v. 
J 

3v, 9v. 

3v. *•* 9ŷ  9ŷ  

9q̂  9qi 

9q̂  9q̂  

9yt 

'̂ s *?! 

9y. 

9q̂  9q̂  

sGk '"' 

(2.5) 

(£+r) X (s+t) 

* * 
If the rank of (J) is &+r, where &+r < s+t then one can say that (V , Y ) 

is a regular point in the sense that it satisfies a constraint qualifica­

tion or normality condition. The above criterion for normality is 

developed by Arrow, Hurwicz and Uzawa [2] and is particularly useful in 

the case in which both inequality and equality constraints must be con­

sidered and one does not wish to start out by positing restrictive 

Â is a portion of the jacobian of an arbitrary set of i inequality 
constraints. 
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assumptions on the curvature of the constraints. Economically one 

might say that the assumption of normality rules out degenerate cases; 

cases in which there is no choice to be made between alternate produc-

2 
tion points and therefore no minimization problem to be considered. In 

particular the satisfaction of such a condition is sufficient to proceed 

to the inspection of first order conditions emanating from the lagrangean 

in the sense that such conditions are indeed necessary for a minimum at 

(V*, Y*). 

The lagrangean expression is written as follows 

r 
L(V,y,A,U) = I v̂ j, ..., v̂ g) +F 

r _ 

I î̂ '̂ i~̂ î îl' îi ' *'*' ̂ is* ̂ il' * îk* ' ̂it̂  ̂i=l 

+ j, J, (2-*) 
1=1 k=l 

where 

Especially true in this case since production functions comprise 
the r equality constraints. Also note that the positing of the subset 
of inequality constraints which are binding at (V*, Y ) is any arbitrary 
choice. 

2 
This is of course an oversimplified explanation in a mathematical 

sense but is nonetheless the economically relevant one. 
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* * 
In order for the point (V , Y ) to minimize C subject to the posited 

constraints the following conditions must be satisfied when evaluated at 

* * * * 
(V , Y , X , U ), 

3C. 3q. 

3v • ° 
il ij 

SC. 3q. 

3V.. " ̂ (̂3V..) - ° 
ij 

3C. 3q. 

3V̂  \̂ 3V. - ° 
IS is 

where 

i = (1, r), j = (1, ..., s) 

-̂ i(̂ ) - "il 2 0 

3qi 

where 

i = (1, r) 
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and 

"ik - îj - îk - °  ̂K 

where K is the feasible set. 

The conditions denoted by (2.7) are comprised of r sets of ine­

qualities where each set itself is comprised of s inequalities. As­

suming that all variable inputs are used at positive levels,̂  and 

dividing the by the k̂  ̂equation of the î  ̂set of equations denoted 

by (2.7), where k, je(l, ..., s), ie(l, ..., r), yields the following 

conditions 

3C./3v.. 3q./3v.. 

3C773  ̂"  ̂ * (2 *̂) 

Assuming that the firm buys its variable factors of production in per­

fectly competitive markets (2.9) may be written as 

w. 3q./3v 
-J- = ̂  . (2.10) 

The interpretation of (2.10) is that the price ratio of any two variable 

inputs used in the production of good i must be equal to the correspond­

ing ratio of their marginal physical products in the production of good 

T̂he inequalities now become equations. 
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i.̂  Alternatively, the productive yield of the last dollar spent on 

variable input j for production of good i must be equal to that of the 

last dollar spent on variable input k used in production of good i. 

If on the other hand the assumption that v̂  ̂>0, j = (1, ..., s), 

is dropped and it is assumed that v̂  ̂> 0 while v̂ j, = 0, j, ke(l, 

s),̂  and furthermore that the strict inequality holds in the k̂  ̂in­

equality of (2.7), then (2.10) should appear in the altered form 

3q /3v w 

aqi/avik " Wk 

or 

9qi/9v • 3q /3v 
— > —i . (2.12) 
"j "'k 

The interpretation of (2.12) is that the marginal productive yield of a 

dollar spent on input j in the production of good i is greater than that 

3 
of a dollar spent on input k in the production of good i. 

Ŵhere w. is the competitive price of v. and is the competitive 
price of v̂ . ̂   ̂

# k. 

3 Which is of course the reason why v̂  ̂= 0. Further results with 
respect to variable input usage could be imagined, however interpreta­
tions depend on values in terms of net revenues, a factor which could 
be quite misleading at this stage, given the nature of the decision 
variables of the multiproduct firm. This observation should be borne 
out by a glance at Chapter IV. 
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Before proceeding any further in this inspection of necessary 

conditions, perhaps it should be pointed out, especially in light of the 

familiarity of those conditions already considered, that the multi-

product firm, even at this early stage of the game, is more than a mere 

collection of individual firms in that: 

(a) there was an initial decision made with respect to the alloca­

tion of fixed factors among the various production processes 

the firm engages in; 

(b) the point of production actually chosen, that is the ultimate 

output mix, depends on factors other than those determining 

output level for the single product firm regardless of the 

degree of competition it faces 

(c) there is, under altered conditions, the possibility of switch-

2 
ing fixed factors among alternative production processes. 

Returning now to the task interrupted, consider the set of condi-

* * 
tions denoted by (2.7) and (2.8). If (V , Y ) does indeed yield a cost 

minimum then > 0 in the sense that increases in output levels require 

additional variable and/or fixed factors. In particular efficient 

operation implies that 

3C 9q. q. 

T̂his consideration, (b), will receive much attention in Chapter IV. 

2 
See Chapter III and the Appendix. 
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Obviously, unless forced to, a firm will not employ a variable factor 

whose marginal physical product is > 0. Note also that efficiency 

considerations lead the firm to increase fixed factor usage as long 

as such increases yield marginal products which are 'positive.̂  The 

reason for this being that fixed factors represent a sunken cost and 

therefore their productive possibilities will be exhausted before 

fresh funds are allocated for the purchase of variable factors. 

Consider now a movement along the isosurface in the neighbor-

* * 
hood of (V , Y ), where 

Equation (2.14) indicates that the increased usage of a fixed factor, 

where efficient, allows the firm to reduce usage of variable factors 

2 
thereby reducing the variable costs of producing the given output. 

Therefore fixed factor usage will be intensified as long as such is 

feasible and efficient. 

MP = 0 = > indifference, however, it shall be assumed that the 
firm stops employing additional units of a fixed factor at the initial 
level of usage at which its marginal product disappears. 

2 All this merely says, in more familiar form, that an increase in 
fixed factors, wehre efficient, denotes a parametric shift in the pro­
duction function yielding the same output level at lower usage of 
variable factors and therefore lower cost. However the above develop­
ment is more in line with the direction to be taken in this chapter and 
the following ones. 
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Look now at the set of the r sets of equations denoted by 

(2.8) and consider in particular the case where all around excess 

capacity exists, that is the instance in which ŷ ĵ  < ŷ ,̂ k = (1, 

t). If in addition ŷ  ̂> 0 then 

3q 3c. 3q 
X — = 0 = »— T i = (1, r), k = (1, t) (2.15) 

where > 0 implies that 3q̂ /9ŷ  ̂= 0, which is the conclusion men­

tioned above (e.g., intensity usage of ŷ  ̂until its marginal physical 

product disappears). An intuitive approach to this conclusion is 

offered below in Figure 1 where the good being considered is Q̂ , the 

production function is q̂  = q̂ (v̂ 2, ŷ )̂ and the graphics are adopted 

from Krauthamer (17). 

In Figure 1, OB represents the ridge line along which the marginal 

* * 
physical product of ŷ  ̂vanishes; (ŷ ,̂ v̂ )̂ minimizes the cost of 

— — * 

producing at the specified level q̂  and ŷ  ̂- ŷ  ̂denotes excess 

capacity. It can be seen from Figure 1 that the firm will expand along 

OB until full capacity (ŷ )̂ is reached. This is essentially the mean­

ing of (2.15) except for the fact that ŷ  ̂= ŷ  ̂was excluded from 

consideration in that case. 

Figure 1, in a sense, offers the implicit warning that at the out-

— * 
put level q̂  it is ŷ  ̂that should appear in the production function 

rather than ŷ *̂ Dano [8] is quite adamant on this very point. 
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•J 

Figure 1. Ridge line 

Finally, a graphical interpretation of (2.14) is given through the 

consideration of a movement along the isoquant, the movement emanating 

* * 
from v̂ )̂ and terminating at (ŷ ,̂ v̂ )̂ where the reduction in 

costs is given by ŵ (v̂  ̂- v̂ )̂ and (2.14) appears as the approxima­

tion 

This procedure of demonstrating the effects of increasing fixed 
factors on variable costs will be given a slightly more rigorous treat­
ment in the later part of this chapter. 
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<'u - \1> - 3^ <4 - ° ° • 

* — 
The next case to be considered is that in which and = 

0. In this instance the constraint on fixed factor k in production of 

good i is barely binding, that is, a reduction in usage of that fixed 

factor would be detrimental in the sense that the output level 

would not be achieved under cost minimizing conditions, while an in­

creased usage level of fixed factor k, were such feasible, could not 

reduce the costs of producing the good at the specified level. The 

condition for such a situation is given by picking the appropriately 

* — 
subscripted equation from (2.15) and appending it with = ŷ .̂ For 

all around barely binding constraints the condition is (2.15) with the 

additional stipulation that y*̂  ' i = (i r). k = (1. .... t). 

Graphically, looking again at the production of in the two input case 

the portrayal is as given in Figure 2 (below) where the interpretation 

warrants no further discussion. 

* — — 
If ŷ ĵ  = ŷ ,̂ û ĵ  = 0, k = (1, ..., t), and q̂  is the profit maxi­

mizing level of output of then this firm might be called a perfect 

capacity planner with respect to production of [given that (2.7) is 

fulfilled). If ŷ ĵ  = ŷ ^̂  û ĵ  =0, i = (1, ..., r), k = (1, ..., r) and 

Q is the profit maximizing output then the firm in question might be 

termed a perfect capacity planner in the sense that even if switching 

were feasible at a zero cost the firm would abstain from any change in 
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t̂ ii = M" 

4' 

t 
t' 

Figure 2. Barely binding constraint 

its original allocation of fixed factors among the various production 

processes. One might then proceed a bit further along the above track 

and go on to define efficiency in production as the satisfaction of 

(2.7) and (2.8) plus the requirement that at the actual production 

levels chosen all the constraints on fixed factors must be barely 

binding.̂  

There are however many reasons why such an extension might be of 

somewhat limited usefulness, the first and most obvious reason being 

that it might seem somewhat silly to attempt to posit planning criteria 

in the context of a problem that excludes explicit consideration of 

The barely binding criterion may, perhaps, appear to be on different 
footing than (2.7) and (2.8) and for that matter different than efficiency 
criteria as normally seen for the single product firm [(2.7); i = 1, y = y 
treated as parameter in production function]. In particular the reason 
for the difference is that the barely binding criterion deals with one 
point rather than all points on a particular expansion path, however it 
would seem somewhat unreasonable to talk about capacity planning at other 
than the production point chosen. 
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investment activities at the outset of the analysis. However the prob­

lem the firm faces, that is in particular the capacity it has available 

is of course the outcome of previous decisions and therefore the presence 

of excess or insufficient capacity devoted solely to production of 

current saleable goods and N.P.O.V.'s should indeed offer some clue as 

to the firm's degree of efficiency with respect to capacity planning.̂  

Another objection might be that the trouble with such an extension 

of efficiency criteria for the firm is that although a bit more general 

than previous criteria they are still partial in the same sense that 

2 
Samuelson [23] notes the partiality of general equilibrium analysis. 

Again this would be a cogent point and gratefully acknowledged. There­

fore, in light of tenuousness of position the perfect capacity planning 

case is not posited as any sort of criterion but merely as an observa­

tion. 

Continuing on again with the inspection of necessary conditions one 

might say that it is not at all clear that û  ̂> 0 has any positive 

implications for planning other than as a possible signal that the firm 

might wish to investigate the possibility of expanding capacity in the 

future, however such decisions involve a myriad of considerations out­

side the scope of this study. In the problems to follow (Chapter III 

Ôbviously the last statement is not in nature of a rebuttal since 
any real consideration of investment requires a somewhat different frame 
of reference than the one chosen for this analysis. 

2 
In particular externalities in production have not been, nor shall 

they be, mentioned. 
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and IV) will be interpreted in terms of opportunity cost and net 

revenue, however in the present problem there is no switching which in a 

sense emasculates the notion of opportunity costs (that is, in the sense 

of how that concept will be used later on) and as noted previously, 

bringing marginal revenue terms into the analysis at this point would be 

quite misleading. One can say, however that û ĵ  < 0 and û  ̂> 0, where 

i, je(l, ..., r) and again the actual level of production is the point 

of interest, indicates an initial misallocation of fixed factor k, too 

much of it having been allocated to production of and not enough for 

The following is a summary of possibilities already (explicitly or 

implicitly) examined with respect to fixed factor usage: 

(a) = 0 and 0 < y*̂  < ŷ ,̂ ie(l, ..., r), ke(l r), 

implies excess of fixed factor k in production of Q̂ ; 

(b) U*̂  = 0 and 0 < y*̂  < ŷ ,̂ ie(l, , r), k = 1, (1, t). 

implies all around excess capacity in the production of 

(c) = 0 and 0 < ŷ ĵ  < ŷ ,̂ i = (1, r), k = (1, t), 

Of course, the set of all possible cases is not exhausted in the 
listing given. Other cases may be easily imagined but are not treated on 
the grounds that there is something to be said for the avoidance of tedium. 
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implies all around excess capacity. 

* * — 
(d) = 0 and = ŷ ,̂ ie(l, ..., r), k = (1, t). 

implies perfect capacity planning production of 

(d) = 0 and ŷ ĵ  = ŷ ,̂ i = (1, r), k = (1, t), 

implies perfect capacity planning. 

(e) > 0, . 0, y*̂  = y.̂ , y*̂  < ŷ ,̂ i, je(l r). 

ke(l, ..., t) 

implies a misallocation of factor k. 

(f) >0, i = (1, ...» r), ke(l, b). 

implies possibility of expansion of stock of factor k in future. 

At this juncture it may be of interest to consider the result 

brought about by the explicit introduction and consideration of those 

factors necessary to the usage of fixed factor (e.g., energy require­

ments, maintenance). The crux of the matter shall be (intuitively) 

that the introduction of the above consideration will cause a contrac­

tion of the relevant economic region of substitution. That is, unless 

those aforementioned costs of operation are negligible the firm will 
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intensify its usage of a given fixed factor not until the marginal 

physical product of that factor vanishes, but rather to the point where 

an increase in operating costs due to capacity intensification are just 

equal to the accompanying reduction in variable costs engendered through 

such intensification. Graphically one might envision the modification 

of Figure 1 offered by Figure 3 (below). 

Figure 3. Introduction of operating costs 

In Figure 3 positive operating costs are associated with the 

usgae of ŷ  ̂and the "economic" ridge line appears to the right of the 

ridge line OB along which the marginal physical product of ŷ  ̂is 

identically zero. Furthermore the combination of inputs which minimize 

irt 

c 

V, 
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the cost of production of at the level is now pictured as (v̂ ^̂  

~ * * rather than (v̂ ,̂ ŷ )̂. 

For the mathematical conclusions of relevance consider the now 

modified cost function 

C = C[V, Z(Y)] + F (2.17) 

C — (ĉ » • • • > ' ' ' t 

Z — • • • > . 

Z is a vector of variable inputs associated directly with the operation 

1 . 
of fixed factors. It shall be assumed that the cost minimizing com­

binations of these specialized variable inputs have already been de-

* 
termined so that the positing of a usage level ŷ ĵ  immediately allows 

2 
cne to, in turn, posit the associated (minimized) operating costs. 

Except for the inclusion of Z(Y) in (2.17) the cost minimization 

problem is essentially the same as that given by (2.3) and (2.4). 

Therefore consider the modified lagrangean expression 

L'(V, Y, X, U) = C[V, Z(Y)] + <X, Q-Q> + <U, G> (2.18) 

T̂hey do not appear (in this treatment) in the vector of variable 
factors V = (v̂ , ..., v̂ ). 

2 
Z(Y) could also be included in the production function, however 

to do so eventually leads to uncalled for difficulties with respect to 
both manipulation of terms and assignments of marginal products. 
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where G is the vector of constraints on the fixed factors. If the 

normality condition is fulfilled at (V, Y) and the first order necessary 

conditions hold when evaluated at (V, Y), then a further necessary 

condition for (V, Y) to minimize C locally is that 

<Vqi(V, y), Ai> = 0 (2.19) 

where v̂  ̂is the gradient vector of the î  ̂equality constraint, and 

fit-fic) • 

Now setting i = 1 and 3q̂ /3ŷ  ̂= 0 -V* k #1 and setting i = 1 yields 

3q̂  3q̂  9q̂  3q̂  

Î) • 

•••• 'ij-'y •••' ̂ is-"is' " (2-2°) 

If (V, Y) is a local minimum then there exists a o neighborhood 
of (V, Y) such that C(V, Y) < C(V, Y) for all (V, Y) e NBdg (V, Y) 
intersection K, where k = {V, Y e RS+t ̂ .-q. = 0, y.,-y., > 0, V, Y > 0} 
and (V, Y) e K. i iK iic -

Actually one has a condition on the positive semi-definiteness of 
the hessian matrix of L that is (V-V, Y-Y) • H • (V-V, Y-Y) > 0, where 
H is the hessian of L, and it is this necessary condition that leads to 
satisfaction of (2.19) (below). See Appendix. 
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Consider now the case where (v̂ -̂v̂ )̂ < 0, where j = (1, s) and 
AJ -J " 

the strict inequality holds for at least one jE(l, s). Further­

more it is assumed that > 0. One then has 

Without the explicit inclusion of the vector Z in the cost function 

one would be led to the conclusion that the total reduction in costs 

implies by the right hand side of (2.21) is 

"3 ("ij-'lj) 

However the fact is that Z has been explicitly included in (2.18) and 

therefore it becomes necessary to take account of the operating costs 

associated with the left hand"side of (2.21). Those costs are given 

by 

8C 3Z g 
(y-.-ŷ .) = ) W, (ZA-Z2) (2.22) 

1=1 3̂ 11 &=1 

where W is the competitive wage rate associated with Z-. Therefore 
ZJJ, X-

the relevant change in costs associated with (2.21) is 

C 
AC = % W.(v..-v,.) - I W_ (Z&- 2&) . (2.23) 

j=l  ̂  ̂ 2=1 
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Condition (2.23) yields the conclusion that the change in costs 

associated with the increased usage of fixed factor will reach 

zero at a lower level of usage than it would had operating costs not 

been considered explicitly. As such this is the rationale for Figure 

2 and the explanation which precedes it. 

Finally, utilizing (2.23) one sees that 

4" ; 0 as \  I  W.(v,.-v,.) | ̂ I f W_ (ZA-2A)| (2.24) 
j=i J 2=1 

and that the firm will increase its usage of fixed k in process 1 if 

AC < 0 and iff AC < 0.̂  

Of course this last result really needs no mathematics to stand 
upon, that is if one is minimizing costs he does not, by definition, 
move from a less expensive to a more expensive input combination to 
produce the same output. The condition (2.24) can of course be 
generalized to take account of any process and any factor. 
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CHAPTER III. CLASSICAL JOINT PRODUCTION 

The second cost minimization problem to be considered deals with 

a multiproduct firm that operates in a productive atmosphere charac­

terized by what Dano [8] refers to as classical joint production. The 

technical aspects of this type of production are also discussed by Dano's 

mentor Frisch [11] and by Sune Carlson [6]. One might find this type 

of production represented mathematically as the implicit function 

• • • » • • • > 9̂ ) ̂ 1' •  •  •  9  Vj, •••» Vg, ŷ » •••> 

(3.1) 

or in the alternate form 

• • • > 

99^(92' *••» •••> 9j.» 

9y ~ 9p(92: * 9̂ » •••> 1' ̂ i' » ĵ» ..., 

(3.1') 
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The scheme represented by (3.1) and (3.1*) diverges from the usual only 

in the sense of inclusion of levels of fixed factor usage in the produc­

tion function. 

This type of production might be characterized by imagining the 

firm as engaging in one complex process in which it simultaneously turns 

out desired, feasible, levels of the r goods it produces. Alternatively 

one might think of many processes being conducted under the same roof 

and sharing fixed factors in the sense that switching of fixed factors 

between processes is not only feasible but also costless. 

The function F, as it appears in (3.1), is assumed to possess con­

tinuous first and second order partial derivatives on the nonnegative 

orthant of . In particular the following derivatives are of 

interest 

3q̂ /3v̂ , 3q̂ /3yk, i = (1, ..., r), j = (1, ..., s), k = (1, ..., t) 

3v73yk, 3yĵ /9v̂ , j = (1, ..., s), k = (1, ..., t) 

e (l, ..., r), a,b e (1, ...» t), 

c,d e (1, ..., s) . (3.2) 

If K is the feasible subset [see (3.4)] of the nonnegative orthant of 

it is assumed that on some subset (which is not necessarily 

proper) of K 



www.manaraa.com

31 

•P—, > 0 and <0, i = (1, r), j = (1, s), 
j \ ~ ~ 

k = (1, ..., t) . (3.2') 

Then on this subset of K, 

3q̂  3F/3v. 

BvT " ~ 3F/3q̂  - ̂  
J 1 

3q. 3F/3y 

- 3F7̂ - ° ' (3.3) 

The derivatives denoted by (3.3) would seem to indicate in the case 

where the strict inequality holds, the presence of all around substitu­

tion, however it is quite possible that in some regions derivatives such 

as 3q̂ /3Vj or 3q̂ /3ŷ  may be negative, since F does not ru. e out inef­

ficient operation, that is, given inputs any production function reveals 

maximum possible outputs, however the input combination noted may well 

lie in an uneconomic region. Assuming away such an uneconomic region 

at the outset through curvature assumptions really makes discussions of 

excess capacity quite beside the point (at least in the context of the 

problem under consideration). The condition (3.2') on the other hand 

implies the existence of an economic region of substitution and it is 

assumed that in the interior of this region that some or all of the 

derivatives given by (3.2) are strictly positive or negative.̂  

All of those derivatives may be generated through usage of the im­
plicit function theorem and signs may be found through usage of conditions 
(3.2') in the economic region. 
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Consider now the problem 

minimize C(V) (3-4) 

subject to 

F(Q, V, Y) = 0 

Q - Q = 0 

Y - Y = 0 

Q, V, Y > 0 

where Q = (q̂ , ...» q̂ , q̂ ), q̂  > 0, i = (1, r). 

Assume now that the £+r+lxr+s+t jacobian matrix [J] (below) 

— * * 1 
is of full row rank when evaluated at (Q, V , Y ). 

3F 3F 9F 3F 3F 9F 

991 *" ̂ r 3̂ 1 "* ̂ s "* Ŝ t 

9̂ 1 9̂ 1 9q̂  9q̂  9qĵ  
-1 

-1 

Sq̂  9q̂  9q̂  9q̂  9q̂  

Iq̂  ... -1 ... ••• gŷ  

1̂ ^̂ 1 ^̂ 1 ^̂ 1 

• • •  5 ? r  ® y i  " •  ® y s  

3y£ Sŷ  

35̂  ••• 15;"3̂  ••• •3̂  ••• "̂  (Q, Y*. V*) (3.5) 

Âssume also that & + 1 < s 4- t. 
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In 3.5, 2 is the number of inequality constraints that are binding at 

— * 1 
IQ, y , V ). The condition (3.7) is a normality condition and has been 

2 discussed previously in Chapter II. 

The lagrangean expression for the cost minimization problem given 

by (3.4) may be written as 

L(Q, V, Y, X, u) = C(V) + <X, -F> + <H, Q - Q> + <u, Y - Y> 

Q, V, Y > 0, u > 0 (3.6) 

where A is a lagrangean multiplier, H = (ĥ , ...» ĥ , ..., ĥ ) is a 

vector of lagrangean multipliers, u = (û , ..., û , ..., û ) is a vector 

of lagrangian multipliers, and < > denotes inner product. 

* * 
If (V , Y ) minimizes cost then the following conditions must hold 

* * 
when evaluated at (V , Y ) 

% • Î 0 

1^ - '••^7 Ï ° 

The binding inequality constraints were chosen arbitrarily to be 
the first £ where & < t. 

2 
See also Appendix. 
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x|— + h. < 0 
aq̂  1 -

X-P- + h < 0 (3.8) 
r -

+ "1 : 0 

+ "k ; 0 

*|f-+"tiO (3.9) 

(Q, V*, Y*) E K = {(Q, V, Y) 1 F = 0, Y - Y > 0, Q = 0, 

V, Q, Y > 0, u < 0} (3.10) 

— * * 

Consider now the case where Q, V , Y >0. Letting i, je(l, ...» s) 

and dividing the î  ̂by the equation of (3.7) yields 

3C/9V. 3F/3V. 3V. 
•' (3.11) 

9C/9Vj 3F/3Vj 3V̂  * 

Now let ze(l, r) and divide both the î  ̂and equations of (3.7) 

by the equation of (3.8). This process leaves one with 



www.manaraa.com

35 

3C/3V, 3F/av, 3q, 

"h " 3F/3q " " 3v7 
z z 1 

and 

3C/3V. 3F/3V. 3q 

h  ̂" 3F/3q̂  " ~ W7 ' (3.13) 
z ẑ J 

Division of (3.12) by (3.13) together with the previously mentioned 

assumption that the firm buys factors in competitive markets yields 

3C/3V. w. 3q /3V 

3C/3V. " ̂  " 3q /3V. ' 
J J z J 

Utilizing (3.14) together with (3.11) one has 

w. 3V. 3q /3V. 

Condition (3.15) should be quite familiar in the sense that it merely 

— * * 

indicates that at (Q, V , Y ) the ratio of marginal costs (in this case 

the constant wage rates ŵ  and ŵ ) of any two variable inputs used in 

production of a particular good must be equal to the corresponding ratio 

of marginal products.̂  The analogy with the one good two input case is 

quite helpful, however lest inference from that case be carried too far, 

one should, at this juncture, try to get at least a rough geometrical 

replaced 
În the case where v̂  = 0, Vj >0 the equality in (3.15) must be 
ced with >. 
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picture of what is involved in this cost minimization problem. Towards 

that end, first pick all the feasible input combinations that yield 

q̂ , that is, pick (V, Y)Ek̂  where 

k̂  = {(V, Y) I F = 0, y - y > 0, = 0, q̂  f 1 = 0, 

Q, V, Y > 0} . 

Such a procedure yields an s + t - 1 dimensional level or iso-surface 

in the nonnegarive orthant of R (i.e. (p ). Repetition of this 

procedure for all of the r specified output levels yields r such iso-

surfaceŝ  or the set of sets K = {k̂ , ..., k̂ }. 

Define now the sum of sets 

H = I k 
i=l 

which is again an s + t - 1 dimensional level surface in cj) . Now 

delete from H any nonfeasible points (points that involve some non-

feasible level of a fixed input) and call the remaining set of points 

— 2 
H'. Any input combination (V, Y) £ H' will yield Q. The first order 

Ï — 
Pick_all feasible input combinations that yield q̂ ; k̂  = 

{(V, Y) I F = 0, Y - Y > 0, qi - q̂  = 0, qj f i = 0, Q, V, Y > 0}, where 
i, jc(l, «.., r). 

2 
(a) As one varies the specified output bundle (TJ), the iso-surfaces 

generated may (and most probably will) intersect, however this should not 
cause any problem. (b) H' = {(V, Y) | F = 0, ̂  = Q, Y - Y > 0, 
Q, V, Y > 0}. 
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conditions then specify rules that the point(s) picked from H' must 

satisfy if costs are to be minimized. 

Continuing on with the inspection of first order necessary condi­

tions, division of the by the n̂  ̂equation of (3.9), where k, n e 

(1, ..., t), yields 

"k % 

"n ' 2F/2y„ - " ZXk ' 
(3.16) 

Redividing now the k̂  ̂and n̂  ̂equations in (3.9) by the equation 

of (3.8), where z e (1, ..., r), leaves one with 

3F/Syk u^ 9q 

9F/3q̂  ĥ  3ŷ  
 ̂ (3.17) 

and 

Dividing (3.17) by (3.18) and using that result together with (3.16) 

yields 

<v 8y 3q_/3y_ 

In the cases where either one or both of the relevant constraints on 

fixed factors are (is) slack or barely binding (3.19) is undefined or 
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vanishes [e.g., = 0 implies that the marginal product of fixed 

factor n is identically 0 in process z (in fact, in all processes) and 

that (3.19) is undefined]. In the case where û , û  > 0 (3.19) merely 

reflects the fact that the ratio of shadow prices of two scarce fixed 

factorŝ  is equal to the ratio of the marginal products of incremental 

units of the fixed factors, the relative sizes of marginal products 

2 
reflecting the relative abilities to reduce costs at the margin. 

Assuming that both normality and first order necessary conditions 

are fulfilled and in addition that the hessian matrix, H, of L, evalu­

ated at (Q, V*, Y*) is such that (V - V*, Y - Y*) • H • (V - V*, Y - Y*) 

> 0, one can go on to posit the second order necessary condition that 

3q̂  3q̂  3q̂  3q̂  

•••• W;- 3̂  

(Vĵ  - - Vg*. yj - - y/)> = 0 .3 

(3.20) 

Perhaps one should not use the term shadow prices in the above con­
text, however, all that is meant is that uĵ  reflects the ability of a 
marginal unit of factor k to reduce costs. 

2 
Many other conditions might be formed through various manipulations 

of the first order conditions, in particular conditions relating to al­
location of fixed factors at the profit margin. However, as mentioned in 
Chapter II, such conclusions are more appropriately relegated to Chapter 
IV where multipliers are interpreted in context of additions to net 
revenue as well as opportunity cost. 

3 
Actually one here uses (3.2) rather than (3.1) so that the con­

straint set is - qi(Vi, ..., Vg, ŷ , ..., ŷ .) = 0, i = (1, ..., r). 
That is, rewrite the lagrangean as Z = C(V) + X(Q - Q(V, Y)) + U(Y - Y) 
a n d  a s s u m e  F . O . C .  a r e  b o t h  n e c e s s a r y  a n d  f u l f i l l e d ,  w h e r e  X  =  ( X ^ ,  . . . ,  
Xf)' 
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Contemplating an increase in scarce fixed factors to be utilized 

in production of the i good, let dV̂  = < 0, j = (1, ...» s), 

* 
and let dŷ  ~ ~ > 0» k = (1, t). These last two assumptions, 

together with (3.20), yield the expression 

s 3q. t 3q. 

or 

s 8q. t 3q. 

jl ̂  "j ' Ji ̂  
where dV. = V. - V.. 

2 2 3 

The term on the left hand side ultimately represents a reduction 

in costs to the tune of 

I w.dV. 
j=i : : 

and therefore indicates that the value of the additional fixed factors 

used in production of comes about through their cost reducing abili­

ties, a principle previously demonstrated in Chapter II. 

One can show using (3.21) and setting dŷ  = 0 that costs rise by 

the amount denoted by Zw.dV. and therefore that reallocation of scarce 
2 2 

fixed factors between processes involves opportunity costs that can be 

measured in terms of dollars of variable costs. However all this is 

done explicitly in Chapter IV. 
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The production function used in this chapter will be used in 

Chapter IV in the sense that the cost minimization problem depicted 

in this section will be assumed to have taken place. 
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CHAPTER IV. PROFIT MAXIMIZATION 

In this chapter the multi-product firm is characterized as seeking 

to maximize net revenuê  over a given product line. Again interest is 

centered upon the economically relevant information emanating from the 

necessary conditions for a local solution to the problem inspected. The 

positing of a given product line tells one at the outset that any maxi­

mum, if achieved, is no better or worse than the product line being 

considered, a factor which will be completely sublimated by the very 

nature of the mathemacical methods used to treat the profit maximum 

problem. 

In this treatment the relevant decision variables utilized by the 

multiproduct firm in its attempt to maximize net revenue are prices and 

N.P.O.V.'s, the profit maximizing vector of decision variables being 

chosen from some feasible set; feasibility being limited by the limits 

of the productive capacity of the firm. 

Nonprice offer variations are, in a sense, individual aspects of 

the firm's sales effort, or as Holdren [15, p. 580] puts it, "any activ­

ity of the seller which is preceptibly distinct to the buyer is poten­

tially a distinct (nonprice offer variation)." Actually, for a discus­

sion of the sales effort and grounds for its inclusion in the analysis 

N̂o discussion is offered below on the rationale for positing profit 
maximization as the objective criterion of the firm, not because the 
matter is trivial but rather because the subject deserves more than a 
cursory treatment. For discussions on alternative objective criteria see 
Baran and Sweezy [3], McGuire [18], and Baumol [4]. 
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one could harken back to the work of Thorstein Veblen [27] who recognized 

in a crystal clear fashion that the sales effort was woven into the 

fabric of even the very design of a commodity. However, Veblen given 

his particular inclinations, would have considered the decomposition of 

the sales effort into distinct entities, each one itself being composed 

of a combination of particles, a game for the misguided. Nevertheless, 

such a pursuit is well within the confines of normal science as it ap­

pears in economics and paradoxical as it may seem, might well be con­

strued as an attempt to incorporate that very notion of Veblen's (e.g., 

the sales effort) further into the corpus of mainstream economic theory. 

Bob R. Holdren [14] offers a somewhat exhaustive treatment of nonprice 

offer variations along modem lines and although the title of his path-

breaking work would tend to indicate an exclusive interest with the 

theory of a multiproduct firm devoted solely to retailing, that title 

is misleading in the sense that the work develops a general theory ap­

plicable to any multiproduct firm. Holdren discusses not only the general 

concept of a nonprice offer variation as it pertains to both retailing 

and manufacturing firms, but also discusses N.P.O.V.'s peculiar either 

to the former or latter. Scitovsky [24] also discusses N.P.O.V.'s in 

the context of the single product firm. ̂ 

The fact that Scitovsky was mentioned last (and least) in no way 
detracts from the brilliance of his presentation but rather merely in­
dicates that Holdren's work is more relevant to this work than is that 
of Scitovsky. By more relevant, of course I only mean closer. 
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Another concept of interest used by Holdren [14, 15] and again by 

his student Gary Swenson [25] is the sales function of the multiproduct 

firm, a concept which takes account of interdependencies among the ele­

ments of the firm's product line. Although the sales function utilizes 

the information yielded by the demand surface the firm faces, the very 

word "sales" is an improvement in that it makes somewhat more extant 

in the analysis the notion that the firm has, and uses, the ability to 

manipulate demand. However if one wishes he may alternatively view the 

sales function as providing the firm with only existing demand informa­

tion and the firm as utilizing that information in its profit maximizing 

pursuit. In this sense, if one is permitted a quip, the sales function 

is indeed a function for all seasons.̂  

The following notation, some of it already familiar, and some of 

it new, will be used throughout the remainder of the work. 

Q • • • » 9) • • • > 9̂ ) (4.1) 

q̂  being the level of the î  ̂saleable good; 

 ̂ (P̂ * •*•» P̂ » •••> P̂ ) J (4.2) 

p̂  being the price level of the î  ̂saleable good; 

V = (vj. • • • > (4.3) 

whether such a property is an asset or liability is of course a 
judgement for the reader himself to make. 
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Vj being the level of the variable input; 

Y = (ŷ , yĵ , ŷ ) , (4.4) 

ŷ  being the maximum amount of factor k available to the firm during 

the time period under consideration. 

Y  =  ( y ^ ,  . y % ^  y ^ ) ,  Y  <  Y  ,  ( 4 . 5 )  

ŷ  being the level of the fixed input; 

A = (â , a , ..., a ) , (4.6) 
X w m 

â  being the level of the N.P.O.V.; 

Q = Q(P, A) (4.7) 

is the sales function of the firm; 

9~ ̂î l̂' •••» *'•' Pji' •••> 3.̂ ) (4.8) 

is the firms sales function for the i'̂  saleable commodity. 

With respect to (4.8), 

9qi > Sq. > 
93-< 0' V7Ï < 7 0' * - . m), i - (1, ...» n) . 
i j W 

(4.9) 

That 9q.(p , p . ,  ..., p , a-, ..., a , ..., a )/3p. < 0 indicates 
i± 1 n 1 w mi 

that the firm faces negatively inclined demand curves for individual 
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products over the region of interest. However, although the actual 

degree of competition the firm faces with respect to markets for in­

dividual goods may differ, it shall always be the case that the firm 

will evaluate the efficacy of changes in decision variables in light of 

the effects such changes engender throughout the product line rather 

than with respect to effects on sales of only a single good. This need 

to consider the overall rather than merely individual effects of changes 

in decision variables is perhaps the most dramatic difference between 

the theory of the multi and that of the single product firm. This dif­

ference will be repeatedly emphasized by the very form of the mathemati­

cal conditions to be posited below and re-emphasized through the economic 

interpretation of those conditions. 

That 3q̂ /9Pj f i ̂  0, merely indicates that goods may be, respec­

tively, substitutes, independent, or complementary in sales. That 

3q̂ /8â  ̂  0 quite straightforwardly indicates the fact that some 

N.P.O.V.'s affect sales of q̂  positively while others make their effect 

felt in the opposite direction. Obviously in a store that sells pri­

marily cigars the attempt to stimulate pipe sales can have positive 

effects in the sense of increasing quantity sold of pipes; can have 

further positive effects from bringing in customers (pipe smokers) who 

might also buy some cigars; and lastly may have the negative effect of 

reducing sales of cigars due to the fact that to many cigar smokers the 

added emphasis on pipes makes the establishment perceptibly less 
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attractive.̂  Lastly 3q̂ /9â  = 0 would indicate either that this partic­

ular aspect of the sales effort has no effect on sales of this particular 

product or that the change was just not large enough to shift demand 

perceptibly. 

Finally, the production problem the firm faces is that discussed 

in Chapter III. However, the results could be extended to cover the 

production problem in Chapter II, the major difference being the neces­

sity of dealing with the opportunity costs terms (to be developed below) 

in a slightly different manner. Other relevant assumptions with respect 

to production and cost minimization will be introduced and discussed as 

the need arises. 

Mathematically the profit maximization problem appears as follows: 

maximize 

n = <P, Q(P, A)> - C(V(Q(A, P))) - F (4.10) 

subject to 

Y - Y(Q(A, P)) > 0, P, A > 0 . (4.11) 

This simple discussion is meant to merely hint at rather than ex­
haust possible cross effects since one could easily spend a great deal 
of time merely discussing cross effects in even such a simple case as a 
cigar store. That is, admittedly, the simplicity disappears when one 
realizes that merely fifty brands, each coming in about 5 to 15 sizes 
and each size coming in as many as 5 to 7 different colors poses grounds 
for considerable discussion of cross effects with respect to both prices 
and nonprice offer variations. Perhaps this hints at the fact that the 
successful small businessman may be, indeed, quite an entrepreneur. 
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The objective function is (4.10). The firm's profit maximization 

* * 
problem is to pick (A , P ) from a feasible set determined by the con­

straint set, (4.11), such that (4.10) is maximized. 

The seemingly strange or unfamiliar fashion in which the cost func­

tion and constraints are written is necessitated by the choice of (A, P) 

as decision variables and is explained directly below. First of all it 

is assumed that the firm proauces all feasible outputs under cost 

minimizing conditions. However even this assumption is not sufficient 

to rule out the possibility that an expression such as V(Q(A, P)) may 

* * 
not be a function, that is, at (A , P ) the mapping may be to a set of 

* 
vectors V rather than the single vector V . Therefore it is assumed 

that any level of output, Q, determines a unique V. This assumption is 

not really that stringent since in reality it merely amounts to the fact 

that the firm is aware of the input combinations it will use to produce 

various levels of output and that these input combinations were chosen 

on the basis that they could yield the desired result at the cheapest 

cost. The same rationale is of course used for Y(Q(A, P)). 

* * 1 
Assume now that (A , P ) is a regular point of the feasible set 

[e.g., the binding constraint set fulfills a normality condition at 

* * 2 
(A , P )] and write the lagrangean expression L as follows; 

Ŝee previous chapters for rank condition of Arrow-Hurwicz-Uzawa 
theorem or see the Appendix. 

9 
The writing out of the arguments is done for the convenience of 

the reader. 
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n 

L=1 

C(v 
U 

2» ..., Vj, ..., Vg) + " ̂ k̂ ' P' A > 0 (4.12) 

where 

U= (û , ..., û , .... Uj.) (4.13) 

is a vector of lagrangean multipliers. 

* * 
If (P , A ) is to maximize 11 then the following necessary conditions 

must hold when evaluated at 

ih 3Pi Ji 3v. 3qj 3P̂  ji k 3q̂  3pj -

< 0 
K ' i=l 'Pa j-l 1=1 8q. 3p̂  k 3q̂  3p̂  -

jl K ' jl 1%% -̂ Ji 
(4.14) 

Although the necessary conditions must hold for any maximum here 
interest will eventually be centered upon a local maximum. A point 
(P*, A*) £ K is said to maximize 11 locally if n(P*, A*) > II (P, A) for 
all (P, A) e Nbdg(P*, A*) fl K, where K denotes the feasible set. 



www.manaraa.com

49 

Below, one of the inequalities in (4.14) is expanded so that the 

reader may see where the funny looking expressions came from: 

3q̂  3q. 

SFT ° + Pi a;- + --- + Pi a;; + --- + p. 
31 (4.15) 

- ( 

3q̂  3p 

3vĵ  3q̂  3p 

- (• 
3C 
3v̂  3qĵ  3p 

+ aç_ !li fli + 
3v̂  3q̂  3p̂  

+ ... + 
3C K ̂'=1 a?! 

4. iÇ_ fil 
'Pi 

'̂k P̂i ••• 5'k 'Pi 

 ̂  ̂ 3C K 
" • •  9 P l  

) (4.16) 

BXi 3q 

-"l% 2? 

-U,.c 
3ŷ  H 

k 3q̂  3p 

3y 3q 

3y. 3q. 

k̂ 34, 

+ 9̂ 7 9F[ + 

Sq̂  9pĵ  

3y 3q 9y. 3q_ 
+ . . . + —— —— + . . . + XT~ ——) 

3q̂  3p̂  (4.17) 

where 

(4.15) » + I pj ̂  ; 
1=1 1 
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and 

t n 9y, 9q. 

Further necessary conditions are 

M_- ? T T T 3 C_^ 

'̂ 1 ' A ' j=l i=l '"j ®«i ' j.i '̂ 1 

SI 

f T f 1£_!Ii 
1=1 'j=l i=l "j=l '"j 

t s 3y, 9q. t 9y, 

Expansion of one of the above inequalities, say the first, yields 

9qi 9q. 9q̂  
Pi 31: + + Pi + ••• + ̂n sir (̂ .is) 
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• • •  +  

-(• 
9C 9v. 9q 

9a 

-(; 
9C Sv» 

9v̂  9q̂  9a 

9Vi 9q̂  9a 

9C 
9v. 9q 

9Vj 9q̂  9a 

3v 9q. 9a 
n 1 

9Vi 3q_̂  3»̂  

3v 3q̂  3â  

3Ç_flsf2n, 
3v̂  3q__ 3â  

(4.20) 

9v, 9v. 
/9C ""1 . , 9C "M , , w-

-̂ T- + ••• + 3:̂  3_ + ••• + 3%- ?T-) 
se 

9v̂  9â  9v. 9â  
3 1 

3Vs 3aĵ  
(4.21) 

9y 9q 

9y, 9q 
-u, 
k 9q̂  9a 

- U  ( •  

9y^ 9q 

t 9q̂  9a 

9y 9q 9y 9q 
+ ••• ••• 

* ••• 

9q̂  9â  

9a, 

(4.22) 

9yi 9yĵ  9y 
âl̂  + ••• + 0% â;- + ... +Dt 3̂ ) (4.23) 

where 

n 9q 
(4.19) = l Pi si-; 

i=l 
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3v. 9q. 
J 1 1 

(4.22) = - I y U 
k=l i=l 

t n 

and 

(4.23) = - I U 
k=l 

t 

k 3â  • 

It is also necessary that A. P, U > 0 and Y - Y > 0. 

To interpret the term 9L/9p̂  consider first (4.15) which is the 

marginal revenue associated with an infinitesimal change in the price 

of good one. As the individual elements of (4.15) denote, and as has 

been noted previously, the marginal revenue induced by the price change 

is actually a compendium of effects collected throughout the product 

line.̂  From this term alone it should be quite clear that there is 

indeed a dramatic difference between the factors underlying the eventual 

production decisions of the multi and single product firms, that being 

the fact that the former is explicitly concerned with the effects that 

Ît is important to realize that a term such as 
to be evaluated at (P*, A*) with qi, i = (1, n-1), being held 
fixed at the level q̂  = q̂ (P*, A*). 
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changes in decision variables bring about in the sales of each and 

every item in the product line while the latter is by definition con­

cerned solely with the sales effect on one good. 

The term denoted by (4.16) represents the marginal variable costs 

associated with marginal changes in production induced by the afore­

mentioned price change. As such it is simply a compendium of marginal 

variable costs, again collected throughout the product line. 

The interpretation of the term (4.17) is, unfortunately, a bit 

more involved than that of the prior two terms considered. is the 

shadow price of fixed factor k. As such it tells one what another unit 

(conveniently defined) of that factor is worth to the firm in terms of 

an increase in net revenue. However due to the formulation of (4.10), 

that is, with respect to the posited decision variables of the firm, 

the level of usage of depends directly upon (A, P) and therefore a 

term such as Û (3ŷ /9q̂ )(9q̂ /3p̂ ) reflects the value in terms of net 

revenue that would be brought about if another unit of fixed factor 

k were available to be allocated for use in that change in production 

of good n called for by the change in p̂ .̂  Looking back to the cost 

minimization problems (in particular Chapter II) it can be seen that 

such an addition in net revenue comes about due to the reduction in 

2 
variable costs of production. 

Ôf course such a term would vanish in the case where the con­
straint on fixed factor k was slack or barely binding. 

2 
A, perhaps, more satisfying interpretation of Uĵ  will be presented 

and used in the latter portion of this chapter. 
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* 1 * — Assuming now that P >0 and Y < Y reduces (4.14) to 

9q̂ . s n gg 3v_. 9q_. 
, , T _ '1 V T 1 _i 

'1 il ^ il S ^ 

4. ? !2i ? ? 

À À  ̂
n 3q s n 3v. 9q. 

il  ̂" j=i il ̂  ̂ ̂ 

The interpretation of (4.24) is quite straightforward in that the 

equations indicate that the marginal revenue induced by a price change 

must equal the marginal variable costs associated with that price 

change. 

If the products were all independent of each other in the sense 

that Sq̂ /BPj f i = 0, then the conditions offered by (4.24), appropri­

ately altered, might seem to indicate that this multiproduct firm would 

be merely a collection of single product firms. However even in this 

special case the indication would be misleading due to the effects (to 

be considered below) of the N.P.O.V.'s which make themselves felt 

Indeed hardly an unlikely situation since consideration is being 
centered upon saleable output prices only, however, for the purist, 
one can assume that as the price of a good becomes arbitrarily small, 
the demand becomes arbitrarily large and therefore prices are bound 
away from zero due to the constraints on the firms productive capacity. 
The alert reader has probably surmised that Y(Q(P*, A )) = Y such that 
some ŷ  > yĵ  implies that P*, A*) is not feasible. 
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throughout the product line, as well as the inclusion of decisions 

with respect to the allocation of scarce factors between alternative 

uses (again, to be considered below). 

It is also interesting to note that if the firm under considera­

tion were to produce only Q̂ , then the relevant marginal revenue term 

with respect to a change in p̂  would be + p̂ (3â /9pĵ ) and that 

9qi > aq. 
4l + Pi + ?! (4-25) 

multiproduct single product 
firm firm 

and in fact, in the case of the multiproduct firm it may be that 

which again merely emphasizes that notion that the multiproduct firm 

is interest in overall reverberations due to adjustment of decision 

variables rather than just individual effects.̂  

Now letting a, b e (1, ..., n) and dividing the â  ̂by the b̂  ̂

equation of (4.24) yield 

Surely the case of loss leaders is not unbeknownst to the reader, 
and although loss leaders are usually associated with retailing firms 
they are nevertheless relevant to producers (both wholesalers and re­
tailers) . 
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3q̂  s n 3v̂  8q,. 

(4.26) 

 ̂ f ? 3C fli 

^ il ^ ji il ̂  ^ 

. ? !!i ? ? 3Ç_̂ !îi 

i=i P̂b ::i il ''j ®Pb 

It is of course the individual terms of (4.26) in which any novelty 

inherent in these conditions must lie since other than that one merely 

has a ratio of marginal gains equal to a corresponding ratio of marginal 

costs. 

Moving on to the second set of necessary conditions and making the 

* 
additional assumption that A >0 one has the following set of equations 

? f ? + f ac-!ll 
i=l ^̂ 1 3=1 1=1 ''j '̂ 1 j=l '"j '̂ 1 

? !!i f ? 
1=1 3v, 3q. 3â  3v, 3â  

* * 
The equalities denoted by (4.27) denote that at (A , P ) the gains en­

gendered from a marginal change in â , we (1, m), must be equal 

to the costs ultimately assignable to that variation. In particular 

those costs are the marginal variable costs of producing induced 

changes in output as well as those emanating from the use of variable 

inputs to produce the posited variation in â . 
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Now letting w, z E  (1, ..., m) and dividing the ŵ  ̂by the 

equation of (4.27) yields 

n 9q. s n 9v. 3q. s  ̂ 9v 
r 1 r V oC ] 1 , y oC J 

k!l̂  il il '"i A '"i  ̂ (4.28, 

? !!i f ? iç_ fli T 
i=i j:i iii '"j K s=i K 

The interpretation of (4.28) is analogous to that of (4.26). If, on 

the othar hand, â  = 0, â  > 0 and the strict inequality holds in the 

inequality of (4.18) then (4.28) would be modified to read 

? !!i f ? 2Ç_!!i!!i+ T A . A A ̂  4i 

7 !îi 7 ? 7 
il ""l 3li j=l K 

Actually the information of interest is contained in the expression 

of (4.18) (now a strict inequality) which when interpreted merely says 

that the costs of increasing â  from 0 to a possible level are greater 

than the gains associated with such a change, that is 
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Conditions (4.26), (4.28), and (4.29) together might be termed the 

first order necessary conditions for the case of all around excess 

capacity. 

Look now at 9iL/3p̂  in the case where U > 0, that is the constraints 

on fixed factors are more than barely binding. The expression is re­

produced directly below as (4.31). 

 ̂? '''i f ? 8C  ̂f 

^  J i  °  i l  1  1 = 1  ^ •  

(4.31) 

At first glance (4.31) does not look very familiar in the sense 

that the majority of expressions examined prior to this point, although 

composed of what one grounded in contemporary textbook price theory 

might term backwards from normal derivatives, seemed to, at the very 

least, strike somewhat familiar chords. The expression of interest, 

however, does not seem to strike such chords. The problem is that 

one does not usually see terms involving fixed factors explicitly in 

first order conditions although such was indeed the case in the cost 

minimization problems done in Chapters II and III. Ample precedence 

for such a procedure is offered in Pfouts [20], Benavie [5], Ferguson 

[10], and Naylor [19] among others although their treatments differed 

in several respects from the ones being offered in this work. 
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In the cost minimization problems it was shown that the increased 

usage of fixed factors (when efficient) reduced the costs of producing 

a given product at a given level. This of course is nothing novel in 

the sense that it merely represents a parametric shift in the produc­

tion function which increase marginal products of the variable factors 

thereby ultimately reducing the variable costs of maintaining a given 

level of output. However in the case that the constraint on a partic­

ular fixed factor is slack, that fixed factor has been used to the 

point where a further increase in its level of usage would be detri­

mental to the posited goal of the firm. Therefore an additional unit 

of that fixed factor is of no immediate value to the firm and the 

shadow price assigned to that factor is identically zero. Alternatively 

one might say that the presence of excess capacity with respect to fixed 

factor k indicates that the price the firm must pay to obtain another 

unit of that factor is zero. But consider now the case where fixed 

* — 
factor k is scarce in the sense that ŷ  = ŷ  and > 0. Now the price 

that the firm must pay to use another unit of this factor in the pro­

duction of a particular output is no longer zero in the sense that such 

a usage involves a reduced level of output in some other productive use 

where the factor could make a positive contribution. A marginal change 

in a decision variable, then, causes a reallocation of scarce capacity; 

such reallocation involving an opportunity cost no less real than any 

other cost and measured in dollars necessary to purchase variable 

Ŝee in particular the development using second order necessary 
conditions in the latter portion of Chapter II. 
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factors necessary to compensate for capacity reduction in areas of 

alternative use for the scarce factor. 

Consider as an approximation for that aforementioned opportunity 

cost with respect to a change in a decision variable, say p̂ , 

t n 3y, 3q. t n 9y, t 

Ji Ji  ̂̂  ~ ̂  ' Ji 
 ̂ A  ̂

where (4.32) is to be evaluated at (A , P , U ) and dp̂  = p̂  - p̂  . 

Since is the value in terms of net revenue of an additional unit of 

ŷ , (4.32) is therefore a weighted sum of values and constitutes a sum 

of costs to the firm in the sense that specific amounts of fixed fac­

tors have been diverted from alternative uses. To see the costs of 

diversion consider 

''l * j, Pi ''Pl ° + J, (4-33) 
1=1 *̂ 1 J k=l 

v'here 

# ; 3c fZi , ? r 3C # 3C , 
Â Ji ̂  ^ ' Â il ̂  ° ^ '"j 

t n 3y, 3q. t n 9y, t 

Ji Ji ^ ̂ ° À Â ^ ° • 
Assuming both sums on the right hand side of (4.33) are positive set 

dŷ  = 0 causing dv. to rise to dv. = dv. + Av. in turn causing variable 
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costs to rise by 

s 
I w (Av ) 
j=l  ̂ J 

which is a dollar sum exactly equal to 

t 
I \ày . 
k=l 

This simple procedure should demonstrate that the diversion of scarce 

fixed factors from alternative uses constitutes a cost as real as any 

other.̂  

Reconsider now (4.33) in the case where dŷ  is again set equal to 

zero but this time dv. is held constant, that is Av. = 0. In this in-
J 2 

2 
stance the term on the left hand side of (4.33) must fall by an equal 

amount, that is, the marginal revenue (approximation to) must fall by 

the amount 

t 
I U dy . 
k=l 

Tliis (somewhat rough) conclusion together with the previous one should 

serve to intuitively demonstrate that the value of scarce fixed factors 

Âll this will be demonstrated below in a slightly more rigorous 
fashion through the usage of second order necessary conditions. 

2 
The assumptions of the case directly preceding this one are being 

maintained, however in the more general case one would replace the word 
fall by the word change. 
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is due to a reduction in direct variable costs and may be (in principle) 

measured by observing the degree to which marginal revenue falls when 

the usage of the aforementioned factors is restricted. 

In light of the discussion directly above it becomes evident that 

the conditions (4.26) are a special case which hold only in the instance 

that U = 0, and that the general case for U > 0 is given by 

n 3q,. s n gç 9v 9q̂  t n 9ŷ  9q̂  

a 
(4.34) 

""a * 8v.  ̂ SP 

'b + I "i âi; -l 3̂ 3̂ »̂ + J, 

Looking now at 3L/9â  in the case where A > 0, U > 0 one sees 

? !!i= f ? aÇLfllfli4. ! 3ç_fli 
il "i 3̂ 1 jii ik S'j 3̂ 1 

t n 9y, 9q. t 9y, 

The main point of interest in (4.35) is that the opportunity costs 

associated with the variation in â  accrue not only through the induced 

changes in output but also through the production of the marginal 

change in â  itself. The appropriate generalizations of (4.28) and 

(4.29) are accomplished through inclusion of opportunity cost terms. 

One could, of course, in the case where A > 0, U > 0, add the 

further condition 
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9a + I 
i=l 'i 3p 

il ^ w 

n  a r 1 1 ^  9 i ^ ^  ̂  \  3 ^  s r  ̂  Ï  \  ̂  

(4.36) 

This expression, (4.36), is again merely a ratio of gains set equal to 

a ratio of costs, but it does however reflect the fact the changes in 

prices are, in terms of direct costs as well as opportunity costs, 

cheaper to accomplish than changes in N.P.O.V.'s. That is not to say 

that in actuality the costs of gaining information and expertise in 

the setting of prices is nil, but rather that the price change itself 

is not a produced iten while the variation in an N.P.O.V. is.̂  

* * 
If the rank condition is fulfilled and (A , P ) maximizes net 

revenue locally, then one has 

(A - A*, P - P*) • G . (A - A*, P - P*) < 0 

* * * 
where G is the hessian matrix of L and is to be evaluated at (A , P , U ) 

În the case â  = 0, the = is replaced by > . 
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The above condition yields the second order necessary condition 

(4-37) 

* * * 
where A= (A -A, P-P). Now, setting A - A =0 and ŷ  y 1 con­

stant yields 

3ŷ  9ŷ  9ŷ  

^ ' 

* * * 
(Pl - Pi » ?! - Pi , .Pa - Pa )> = 0 . (4.38) 

Multiplication of (4.38) by yields 

U Z ̂  dPi (4.39) 
1=1 

where dp̂  = p̂  - p̂  . Noting that 

3y n 3y 3q n 3y 

one can write, in the case where dp̂  f a = 0, that 

n 3y n 9y 9q n 9y 

"l j, 3?̂  = "l I ̂ ̂ - "l I NT . (4-40) 

Now arbitrarily setting 
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dq^ >0, i = (1, ...» d) 

dq̂  < 0, i = (d + 1, ...» n) , 

yields 

d 9y- n 9y. , 

°i j, 557 = "i âïT 

The left hand side of (4.41) measures the increase in net revenue due 

to the increased usage of ŷ  in processes one through d while the right 

hand side measures the decrease in net revenue due to the removal of 

ŷ  from processes d + 1 through n. The fact that the two sides of 

* * 
(4.41) are equal indicates that at (A , P ) factor one is allocated 

in a fashion such that a reallocation (locally) could not increase 

profits. Alternatively, the losses in net revenue accruing due to an 

induced withdrawal of factor one must be just offset by the gains in 

net revenue which accure through its increased usage in alternative 

processes. 

Now still holding dp̂  # a = 0 and letting all fixed factors vary, 

yields the set of equalities given in (4.42) (below). 

g 9yi " 9̂ 1 . 

J, ̂  '"i = "i ,=L ̂  ''i 

1 ̂ * Where da. = q. - q.. 
i 1 
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"k 1 \ X % 
d 3y n 3y, 

"t j, ̂  = "t J,, 357 

Summation of the left hand and the right sides of (4.42) leaves one 

with the equality 

t d 3y, t n 3y, 

* * 
The equality (4.43) indicates that at (A , P ) the net revenue created 

through an induced reallocation of fixed factors will be exactly equal 

to reduction in net revenue engendered by the removal of those fixed 

factors from alternative uses. 

Going back now for a moment to (4.37) and hold dp̂  f a, b con­

stant one gets the set of equations 

ayi 
9?; ̂Pa + '̂ Pb = ° 

at; dPa + dPb = 0 

3yt ay*. 
âF; dPb = 0 ' (4-44) 
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Multiplying each of the t equation of (4.44) by the appropriate la-

til 
grangean multiplier (multiply the k equation by ) together with 

summation of the equations yields 

r ^̂ k I ^̂ k 1 

At the profit maximum an infinitesimal change in any price will have 

* * 
the same effect. If (A , P ) is a unique local maximum one could 

amend the interpretation to read that at the profit maximum infini­

tesimal change in any price will reduce net revenue by the same amount. 

Of course the above analysis can be extended to include N.P.O.V.'s, 

however, as noted earlier, there is something to be said for the 

avoidance of tedium. 

1 
Where dp̂  = -dp̂ . 

2 r 
For instance replace the r.h.s. of (4.45) with I dâ . 

k=l w 
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CHAPTER V. CONCLUSION 

As indicated in the introduction, and as the reader must be aware 

of by this point, this work is not of the nature of an overall complete 

one in the sense that many important problems concerning the theory of 

the multiproduct have not been treated; some in fact have not even been 

mentioned. However, this work is merely of a part of what is to be 

(hopefully) ongoing research on the theory of the multiproduct firm. 

It is hoped, however, that what has been presented has at least 

amply stressed the nature of the multiproduct firm's short run profit 

maximization decisions as well as the increased role of importance fixed 

factors assume in both the profit maximization and cost minimization 

problems. Admittedly the nature of the decision variables chosen for 

the profit maximization problem lead to some unfamiliar and perhaps what 

might be termed unwieldly expressions. On this last score three points 

might be made, the first one being that, of course, any way of doing 

things different from that way which has been in the past continually 

stressed and practiced would seem unfamiliar and perhaps unwieldly. The 

second point is that symmetry, as appealing as it is, is certainly not 

the end of theorizing. Thirdly, the choice of decision variables was in 

no way based on the hopes of product differentiation but rather upon the 

notion that those control variables are indeed the ones of interest to 

the multiproduct firm. 
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APPENDIX. NONLINEAR PROGRAMMING 

This Appendix treats a nonlinear programming problem which is 

similar in form to those problems treated throughout the preceding 

chapters. The treatment of this problem (to be given below) is designed 

to parallel that used in the above mentioned problems. 

Some more general treatments particularly useful to economists are 

Hadley [12], Intrilligator [16], Benavie [5], and Tackayama [26]. A 

recent treatise by Hestenes [13], a mathematician noted for his work in 

optimal control theory, treats nonlinear programming via vector space 

methods. Of course this brief list in no way exhausts the larger set of 

works available on the subject. 

Assume that X is an open subset of r" and the problem is to maxi­

mize (minimize) 

f ( X j ^  *  •  •  •  >  X  , • • • » x̂ ) , X  ~ (x̂ , .. «, x̂ ) £ X 

subject to 

gj (Xĵ j •••» •••» 0̂, j — 1, ...,m 

h|̂ (Xĵ , .. «, X. « «, x̂ ) — 0, k — 1, . «, & 

x̂  > 0, i = 1, ..., n (A.l) 
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where f, and ĥ , j = (1, m), k = (1, i ) .  are assumed to be 

real valued and twice differentiable on X.̂  

* * * 
Assume that x e K is such that f (x ) > f (x) x e Nbdg (x ) fl K 

* 
where K = {x|ĝ  > 0, ĥ  = 0, x > 0} and x E  K. Furthermore, assume 

that the following jacobian matrix J is of full row rank, 

(J) = 

3h, 3h, 3h, 

d x ' " d x ' " d x  

3x, ' " 3x, ' '3x 

3x. 

3ĥ  

'3x, 

3ĥ  

3x 

3gi 3gi 3gi 

3x, 3x. 3x 

3gd agj % 
3x, ' 3x,' ax 
1 1 n (X*) (A. 2) 

d + & X n 

where d denotes the number of effective inequality constraints at X , 

d < m, and 2 + d < n. 

Actually if interest is merely of a local nature one need make 
such differentiability assumptions only on a neighborhood of the solu­
tion. 
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Now from the lagrangean expression 

L(Xy X, U) — f(Xĵ ) •••) •••» *0̂  

I 

k=l 

m 
+  ̂ U. g. (x. ) • • • » 3c. ) • • • » X ) 3)where 
j=l J J 

where 

A = • • • » « « «, 

and 

U =  (U^,  . . . ,  U j ,  . . . ,  U^)  

and 

x̂  > 0, i = (1, ..., n); > 0, j = (1, ..., m) . 

If X maximizeŝ  f locally subject to the constraints given in (A.1) 

then the following conditions (first order necessary conditions) must 

hold at X 

F̂or minimization reverse the inequalities in (A.3) and (A.4). 
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Z 3ĥ  m 9g. 

S, 9h, m 8g. 

3=i-° 

3f . I 5 

* 
If X is a local maximum and (A.2) is satisfied then 

(X - X*) • H • (X - X*) < 0 (A.4) 

where H is the hessian matrix of L. 

Condition (A.4) satisfies 

<(!bs 
3̂x,' ' 3x. 9x 
1 1 n 

* * * 
(x. - X .  ,  X .  -  X .  ,  X  - X  ) > = 0  
1 ± XI n n 

where k = (1, £), and 

9gi 3̂  3gj 

c.' ' 3x ' 
1 n 

^̂ 3x ' ' 3x/ ' 3x )' 

* * * 
(x^-x, , . X  -  X  ,  . X  - X  )> = 0 

J .  J .  1 1  n  n  

where j e J = (1, ..., d), and J is the set of inequality constraints 

* 
that are binding at X . 
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